EMODnet Physics ERDDAP Installation EMODnet Physics ERDDAP
Easier access to scientific data
log in    
Brought to you by EMODnet Physics    

ERDDAP > tabledap > Make A Graph ?

Dataset Title:  SPI - Ionic composition of particulate matter (PM10) from high-volume sampling
over the Southern Ocean during the austral summer of 2016/2017 on board the
Antarctic Circumnavigation Expedition (ACE).
Subscribe RSS
Institution:  SPI   (Dataset ID: SPI_10_5281_zenodo_3922146)
Information:  Summary ? | License ? | Metadata | Background (external link) | Data Access Form
 
Graph Type:  ?
X Axis: 
Y Axis: 
Color: 
-1+1
 
Constraints ? Optional
Constraint #1 ?
Optional
Constraint #2 ?
       
       
       
       
       
 
Server-side Functions ?
 distinct() ?
? ("Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.")
 
Graph Settings
Marker Type:   Size: 
Color: 
Color Bar:   Continuity:   Scale: 
   Minimum:   Maximum:   N Sections: 
Y Axis Minimum:   Maximum:   
 
(Please be patient. It may take a while to get the data.)
 
Optional:
Then set the File Type: (File Type information)
and
or view the URL:
(Documentation / Bypass this form ? )
    [The graph you specified. Please be patient.]

 

Things You Can Do With Your Graphs

Well, you can do anything you want with your graphs, of course. But some things you might not have considered are:

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  start_datetime {
    Int32 _ChunkSizes 512;
    String _CoordinateAxisType "Time";
    Float64 actual_range 1.482192e+9, 1.489968e+9;
    String axis "T";
    String description "time";
    String ioos_category "Time";
    String long_name "Time";
    String standard_name "time";
    String time_origin "01-JAN-1970 00:00:00";
    String units "seconds since 1970-01-01T00:00:00Z";
  }
  start_latitude {
    Int32 _ChunkSizes 512;
    Float64 actual_range -73.1808, -34.0836;
    String attribute "Latitude of the vessel’s geographical position at the start of sampling of respective filter";
    String description "Latitude of the vessel’s geographical position at the start of sampling of respective filter [degrees North]";
    String spi_original_name "start_latitude(degN)";
    String standard_name "latitude";
    String units "degree_north";
  }
  start_longitude {
    Int32 _ChunkSizes 512;
    Float64 actual_range -179.9149, 177.2017;
    String attribute "Longitude of the vessel’s geographical position at the start of sampling of respective filter";
    String description "Longitude of the vessel’s geographical position at the start of sampling of respective filter [degrees East]";
    String spi_original_name "start_longitude(degE)";
    String standard_name "longitude";
    String units "degree_east";
  }
  end_datetime {
    Int32 _ChunkSizes 512;
    String _CoordinateAxisType "Time";
    Float64 actual_range 1.4822784e+9, 1.4900544e+9;
    String axis "T";
    String description "time";
    String ioos_category "Time";
    String long_name "Time";
    String standard_name "time";
    String time_origin "01-JAN-1970 00:00:00";
    String units "seconds since 1970-01-01T00:00:00Z";
  }
  end_latitude {
    Int32 _ChunkSizes 512;
    Float64 actual_range -73.1808, -34.0836;
    String attribute "Latitude of the vessel’s geographical position at the end of sampling of respective filter";
    String description "Latitude of the vessel’s geographical position at the end of sampling of respective filter [degrees North]";
    String spi_original_name "end_latitude(degN)";
    String standard_name "latitude";
    String units "degree_north";
  }
  end_longitude {
    Int32 _ChunkSizes 512;
    Float64 actual_range -179.9149, 177.2017;
    String attribute "Longitude of the vessel’s geographical position at the end of sampling of respective filter";
    String description "Longitude of the vessel’s geographical position at the end of sampling of respective filter [degrees East]";
    String spi_original_name "end_longitude(degE)";
    String standard_name "longitude";
    String units "degree_east";
  }
  volume_of_sampled_air {
    Int32 _ChunkSizes 512;
    Float64 actual_range 0.0522, 721.0945;
    String description "Volume of air sampled through respective filter between start and end of sampling [cubic meter]";
    String spi_original_name "volume_of_sampled_air(m^3)";
    String units "m3";
  }
  mass_concentration_of_pm10_ambient_aerosol_particles_in_air {
    Int32 _ChunkSizes 512;
    Float64 actual_range 4.06e-9, 3.13e-7;
    String description "Mass concentration of particles with a mobility diameter below 10 micrometers (PM10) for given sampling period. As reference volume, the volume of air sampled through the filter was used [kilograms per cubic meter]";
    String spi_original_name "mass_concentration_of_pm10_ambient_aerosol_particles_in_air(kg m^-3)";
    String standard_name "mass_concentration_of_pm10_ambient_aerosol_particles_in_air";
    String units "kg m-3";
  }
  mass_concentration_of_pm10_chloride_dry_aerosol_particles_in_air {
    Int32 _ChunkSizes 512;
    Float64 actual_range 1.38e-10, 1.21e-8;
    String description "Mass concentration of chloride in sampled PM10 particles on respective filter. Chloride filter content from ion chromatography. As reference volume, the volume of air sampled through the filter was used [kilograms per cubic meter]";
    String spi_original_name "mass_concentration_of_pm10_chloride_dry_aerosol_particles_in_air(kg m^-3)";
    String units "kg m-3";
  }
  mass_concentration_of_pm10_nitrate_dry_aerosol_particles_in_air {
    Int32 _ChunkSizes 512;
    Float64 actual_range 1.27e-12, 3.71e-9;
    String description "Mass concentration of nitrate in sampled PM10 particles on respective filter. Nitrate filter content from ion chromatography. As reference volume, the volume of air sampled through the filter was used [kilograms per cubic meter]";
    String spi_original_name "mass_concentration_of_pm10_nitrate_dry_aerosol_particles_in_air(kg m^-3)";
    String units "kg m-3";
  }
  mass_concentration_of_pm10_sulfate_dry_aerosol_particles_in_air {
    Int32 _ChunkSizes 512;
    Float64 actual_range 3.1e-10, 3.54e-9;
    String description "Mass concentration of sulfate in sampled PM10 particles on respective filter. Sulfate filter content from ion chromatography. As reference volume, the volume of air sampled through the filter was used [kilograms per cubic meter]";
    String spi_original_name "mass_concentration_of_pm10_sulfate_dry_aerosol_particles_in_air(kg m^-3)";
    String units "kg m-3";
  }
  mass_concentration_of_pm10_oxalate_dry_aerosol_particles_in_air {
    Int32 _ChunkSizes 512;
    Float64 actual_range 5.13e-13, 2.37e-10;
    String description "Mass concentration of oxalate in sampled PM10 particles on respective filter. Oxalate filter content from ion chromatography. As reference volume, the volume of air sampled through the filter was used [kilograms per cubic meter]";
    String spi_original_name "mass_concentration_of_pm10_oxalate_dry_aerosol_particles_in_air(kg m^-3)";
    String units "kg m-3";
  }
  mass_concentration_of_pm10_bromide_dry_aerosol_particles_in_air {
    Int32 _ChunkSizes 512;
    Float64 actual_range 3.94e-12, 3.22e-11;
    String description "Mass concentration of bromide in sampled PM10 particles on respective filter. Bromide filter content from ion chromatography. As reference volume, the volume of air sampled through the filter was used [kilograms per cubic meter]";
    String spi_original_name "mass_concentration_of_pm10_bromide_dry_aerosol_particles_in_air(kg m^-3)";
    String units "kg m-3";
  }
  mass_concentration_of_pm10_methanesulfonic_acid_dry_aerosol_particles_in_air {
    Int32 _ChunkSizes 512;
    Float64 actual_range 5.92e-13, 4.55e-10;
    String description "Mass concentration of methanesulfonic acid in sampled PM10 particles on respective filter. Methanesulfonic acid filter content from ion chromatography. As reference volume, the volume of air sampled through the filter was used [kilograms per cubic meter]";
    String spi_original_name "mass_concentration_of_pm10_methanesulfonic_acid_dry_aerosol_particles_in_air(kg m^-3)";
    String units "kg m-3";
  }
  mass_concentration_of_pm10_sodium_dry_aerosol_particles_in_air {
    Int32 _ChunkSizes 512;
    Float64 actual_range 8.89e-11, 7.08e-9;
    String description "Mass concentration of sodium in sampled PM10 particles on respective filter. Sodium filter content from ion chromatography. As reference volume, the volume of air sampled through the filter was used [kilograms per cubic meter]";
    String spi_original_name "mass_concentration_of_pm10_sodium_dry_aerosol_particles_in_air(kg m^-3)";
    String units "kg m-3";
  }
  mass_concentration_of_pm10_ammonium_dry_aerosol_particles_in_air {
    Int32 _ChunkSizes 512;
    Float64 actual_range 2.8e-12, 9.0e-10;
    String description "Mass concentration of ammonium in sampled PM10 particles on respective filter. Ammonium filter content from ion chromatography. As reference volume, the volume of air sampled through the filter was used [kilograms per cubic meter]";
    String spi_original_name "mass_concentration_of_pm10_ammonium_dry_aerosol_particles_in_air(kg m^-3)";
    String units "kg m-3";
  }
  mass_concentration_of_pm10_potassium_dry_aerosol_particles_in_air {
    Int32 _ChunkSizes 512;
    Float64 actual_range 2.39e-12, 4.02e-10;
    String description "Mass concentration of potassium in sampled PM10 particles on respective filter. Potassium filter content from ion chromatography. As reference volume, the volume of air sampled through the filter was used [kilograms per cubic meter]";
    String spi_original_name "mass_concentration_of_pm10_potassium_dry_aerosol_particles_in_air(kg m^-3)";
    String units "kg m-3";
  }
  mass_concentration_of_pm10_magnesium_dry_aerosol_particles_in_air {
    Int32 _ChunkSizes 512;
    Float64 actual_range 9.98e-12, 8.13e-10;
    String description "Mass concentration of magnesium in sampled PM10 particles on respective filter. Magnesium filter content from ion chromatography. As reference volume, the volume of air sampled through the filter was used [kilograms per cubic meter]";
    String spi_original_name "mass_concentration_of_pm10_magnesium_dry_aerosol_particles_in_air(kg m^-3)";
    String units "kg m-3";
  }
  mass_concentration_of_pm10_calcium_dry_aerosol_particles_in_air {
    Int32 _ChunkSizes 512;
    Float64 actual_range 9.23e-11, 2.25e-9;
    String description "Mass concentration of calcium in sampled PM10 particles on respective filter. Calcium filter content from ion chromatography. As reference volume, the volume of air sampled through the filter was used [kilograms per cubic meter]";
    String spi_original_name "mass_concentration_of_pm10_calcium_dry_aerosol_particles_in_air(kg m^-3)";
    String units "kg m-3";
  }
  quality_flag {
    Int32 _ChunkSizes 1024;
    Int32 actual_range 0, 1;
    String description "Quality flag (QF) for respective filter, primarily based on the volume of sampled air. A value of one (QF=1) indicates good data quality for all given quantities. Zero values (QF=0) indicate bad data quality, given quantities should be treated carefully.";
    String spi_original_name "quality_flag";
  }
 }
  NC_GLOBAL {
    String cdm_data_type "Other";
    String citation "Tatzelt, C., Henning, S., Tummon, F., Hartmann, M., Baccarini, A., Welti, A., Lehtipalo, K., Schmale, J. and Van Pinxteren, M. (2020). Ionic composition of particulate matter (PM10) from high-volume sampling over the Southern Ocean during the austral summer of 2016/2017 on board the Antarctic Circumnavigation Expedition (ACE). (Version 1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.3922147";
    String contributors "[{'title': 'Christian Tatzelt', 'path': 'https://orcid.org/0000-0001-7795-5372', 'email': 'christian.tatzelt@tropos.de', 'role': 'author', 'organisation': 'Leibniz Institute for Tropospheric Research (TROPOS), Germany'}, {'title': 'Silvia Henning', 'path': 'https://orcid.org/0000-0001-9267-7825', 'email': 'silvia.henning@tropos.de', 'role': 'author', 'organisation': 'Leibniz Institute for Tropospheric Research (TROPOS), Germany'}, {'title': 'Fiona Tummon', 'role': 'author', 'organisation': 'ETH Zürich, Switzerland', 'x_spi_additional_organisation': 'MeteoSwiss, Payerne, Switzerland'}, {'title': 'Hartmann, Markus', 'path': 'https://orcid.org/0000-0001-9700-1701', 'role': 'author', 'organisation': 'Leibniz Institute for Tropospheric Research (TROPOS), Germany'}, {'title': 'Andrea Baccarini', 'path': 'https://orcid.org/0000-0003-4614-247X', 'role': 'author', 'organisation': 'Paul Scherrer Institute, Villigen, Switzerland'}, {'title': 'André Welti', 'path': 'https://orcid.org/0000-0002-3549-1212', 'role': 'author', 'organisation': 'Finnish Meteorological Institute, Helsinki, Finland'}, {'title': 'Katrianne Lehtipalo', 'path': 'https://orcid.org/0000-0002-1660-2706', 'role': 'author', 'organisation': 'University of Helsinki, Finland'}, {'title': 'Julia Schmale', 'path': 'https://orcid.org/0000-0002-1048-7962', 'role': 'author', 'organisation': 'EPFL, Lausanne, Switzerland', 'x_spi_additional_organisation': 'Paul Scherrer Institute, Villigen, Switzerland'}, {'title': 'Manuela Van Pinxteren', 'path': 'https://orcid.org/0000-0002-8746-8620', 'email': 'manuela.vanpinxteren@tropos.de', 'role': 'author', 'organisation': 'Leibniz Institute for Tropospheric Research (TROPOS), Germany'}, {'title': 'Jenny Thomas', 'path': 'https://orcid.org/0000-0002-5986-7026', 'role': 'publisher', 'organisation': 'Swiss Polar Institute, Switzerland'}, {'title': 'Anett Dietze', 'role': 'contributor', 'organisation': 'Leibniz Institute for Tropospheric Research (TROPOS), Germany'}, {'title': 'Susanne Fuchs', 'role': 'contributor', 'organisation': 'Leibniz Institute for Tropospheric Research (TROPOS), Germany'}, {'title': 'Anke Rödger', 'role': 'contributor', 'organisation': 'Leibniz Institute for Tropospheric Research (TROPOS), Germany'}]";
    String Conventions "COARDS, CF-1.6, ACDD-1.3";
    String creator_name "Christian Tatzelt";
    String creator_type "institution";
    String creator_url "https://orcid.org/0000-0001-7795-5372";
    String DOI "https://doi.org/10.5281/zenodo.3922147";
    String history 
"2020-09-22T17:09:57Z (local files)
2020-09-22T17:09:57Z https://erddap.emodnet-physics.eu/tabledap/SPI_10_5281_zenodo_3922146.das";
    String infoUrl "https://doi.org/10.5281/zenodo.3922147";
    String institution "SPI";
    String keywords "ACE, ACE-SPACE, aerosol, Antarctic Circumnavigation Expedition, Antarctica, filter sampling, ionic composition, major ions, PM10, Southern Ocean";
    String license "CC-BY-4.0";
    String platform_code "UBXH3_ACE_3922146";
    String platform_name "R/V Akademik Tryoshnikov";
    String sourceUrl "(local files)";
    String standard_name_vocabulary "CF Standard Name Table v55";
    String summary "Aerosol particles originate from a variety of sources (Tomasi and Lupi, 2017). Information on particle chemical composition can be utilized to access particle origin. During the Antarctic Circumnavigation Expedition (ACE) cruise around the Southern Ocean, off-line filter sampling of ambient air was performed. Filters were stored on the ship (at -20 degrees C) and after the cruise concluded analysed at Leibniz-Institute for Tropospheric Research (TROPOS) concerning ionic composition of sampled material. Here, we give mass concentrations for inorganic ions (chloride, sodium, potassium, magnesium, calcium, ammonium, nitrate, sulphate, and bromide), organic constituents (methane-sulfonic acid and oxalate), and total filter load of particles with a mobility diameter smaller 10 micrometers (PM10) for each 24 hour-sampled filter.";
    String title "SPI - Ionic composition of particulate matter (PM10) from high-volume sampling over the Southern Ocean during the austral summer of 2016/2017 on board the Antarctic Circumnavigation Expedition (ACE).";
    String type "ferrybox/ship";
  }
}

 

Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.


 
ERDDAP, Version 2.02
Disclaimers | Privacy Policy | Contact