EMODnet Physics ERDDAP Installation EMODnet Physics ERDDAP
Easier access to scientific data
log in|?   
Brought to you by EMODnet Physics    
 
 
griddap Subset tabledap Make A Graph wms files Title Summary FGDC ISO 19115 Info Background Info RSS Email Institution Dataset ID
https://erddap.emodnet-physics.eu/erddap/tabledap/SPI_10_5281_zenodo_3843262 https://erddap.emodnet-physics.eu/erddap/tabledap/SPI_10_5281_zenodo_3843262.graph https://erddap.emodnet-physics.eu/erddap/files/SPI_10_5281_zenodo_3843262/ SPI - Bromine monoxide (BrO) measurements made using a MAX-DOAS (Multi-AXis Differential Optical Absorption Spectroscopy) instrument in the austral summer of 2016/17 during the Antarctic Circumnavigation Expedition (ACE). To achieve the objectives of the project, we installed a MAX-DOAS (Multi-AXis Differential Optical Absorption Spectroscopy) instrument on the vessel “Akademik Tryoshnikov”. This instrument is based on the DOAS technique, which is used to measure trace gas concentrations in the atmosphere. The method consists of the analysis of the spectral absorption lines that each trace gas produces in the solar spectra. The DOAS technique uses the narrowband features that every trace gas has in their spectral absorption coefficients. This differential cross section is unique and acts like a fingerprint for the trace gases, allowing to differentiate between them and to estimate their concentrations (for further details see Platt and Stutz, 2008). In the past decades, atmospheric chemists have come to realize that halogen species (like Cl, Br or I and their oxides ClO, BrO and IO) exert a powerful influence on the chemical composition of the troposphere and through that influence affect the evolution of pollutants, hence having a significant impact on climate. These reactive halogen species are potent oxidizers for organic and inorganic compounds throughout the troposphere. In particular, halogen cycles can act on several compounds (such as methane, ozone, particles…), all of which are climate forcing agents through direct and indirect radiative effects. Dynamic exchange of halogens between ocean, sea ice, snowpack and atmosphere is the main driver for the frequent occurrence of Ozone Depletion Events (ODEs) and Atmospheric Mercury Depletion Events (AMDEs) (Saiz-Lopez and von Glasow, 2012). In this dataset we present the mixing ratio and vertical column density of bromine monoxide (BrO) recorded in the austral summer of 2016/2017 in the Southern Ocean and Atlantic Ocean, averaged over one-hour time periods.\n\ncdm_data_type = Other\nVARIABLES:\ndatetime (Time, seconds since 1970-01-01T00:00:00Z)\nbro_mixing_ratio (parts per trillion)\nbro_mixing_ratio_unc (parts per trillion)\nbro_vcd\nbro_vcd_unc\n https://erddap.emodnet-physics.eu/erddap/info/SPI_10_5281_zenodo_3843262/index.htmlTable https://doi.org/10.5281/zenodo.3843263 (external link) http://erddap.emodnet-physics.eu/erddap/rss/SPI_10_5281_zenodo_3843262.rss https://erddap.emodnet-physics.eu/erddap/subscriptions/add.html?datasetID=SPI_10_5281_zenodo_3843262&showErrors=false&email= SPI SPI_10_5281_zenodo_3843262

 
ERDDAP, Version 2.24
Disclaimers | Privacy Policy | Contact