EMODnet Physics ERDDAP Installation EMODnet Physics ERDDAP
Easier access to scientific data
log in    
Brought to you by EMODnet Physics    

ERDDAP > griddap > Make A Graph ?

Dataset Title:  Daily Sea Ice Concentration Analysis from OSI SAF EUMETSAT Subscribe RSS
Institution:  EUMETSAT OSI SAF   (Dataset ID: SIW_OSISAF_GLO_SIT_SIE_SIC_OBS_conc)
Information:  Summary ? | License ? | Metadata | Background (external link) | Data Access Form
 
Graph Type:  ?
X Axis:  ?
Y Axis:  ?
Color:  ?
 
Dimensions ?    Start ?    Stop ?
time (UTC) ?
    |< - +
    -
< slider >
yc (km) ?     specify just 1 value →
    |< -
< <
xc (km) ?     specify just 1 value →
    |< -
< <
 
Graph Settings
Marker Type:   Size: 
Color: 
Color Bar:   Continuity:   Scale: 
   Minimum:   Maximum:   N Sections: 
Y Axis Minimum:   Maximum:   
 
(Please be patient. It may take a while to get the data.)
 
Optional:
Then set the File Type: (File Type information)
and
or view the URL:
(Documentation / Bypass this form ? )
    Time range:  |<  -            
[The graph you specified. Please be patient.]

 

Things You Can Do With Your Graphs

Well, you can do anything you want with your graphs, of course. But some things you might not have considered are:

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
  time {
    String _CoordinateAxisType "Time";
    Float64 actual_range 1.2308112e+9, 1.3569552e+9;
    String axis "T";
    String calendar "standard";
    String ioos_category "Time";
    String long_name "reference time of product";
    String standard_name "time";
    String time_origin "01-JAN-1970 00:00:00";
    String units "seconds since 1970-01-01T00:00:00Z";
  }
  yc {
    Float64 actual_range -5345.0, 5845.0;
    String axis "Y";
    String long_name "y coordinate in Cartesian system";
    String standard_name "projection_y_coordinate";
    String units "km";
  }
  xc {
    Float64 actual_range -3845.0, 3745.0;
    String axis "X";
    String long_name "x coordinate in Cartesian system";
    String standard_name "projection_x_coordinate";
    String units "km";
  }
  ice_conc {
    Float32 _FillValue -9.99;
    Float64 colorBarMaximum 100.0;
    Float64 colorBarMinimum 0.0;
    String grid_mapping "Polar_Stereographic_Grid";
    String long_name "concentration of sea ice";
    String standard_name "sea_ice_area_fraction";
    String units "percent";
    Float32 valid_max 100.0;
    Float32 valid_min 0.0;
  }
  ice_conc_unfiltered {
    Float64 _FillValue -9.99;
    Float64 colorBarMaximum 100.0;
    Float64 colorBarMinimum 0.0;
    String comment "This field contains the unfiltered ice concentration. A climatology mask has been applied to remove spurious ice, but no other filtering is applied. This field may contain spurious ice. If a filtered field is required, use the \"ice_conc\" field.";
    String grid_mapping "Polar_Stereographic_Grid";
    String long_name "The unfiltered sea ice concentration on the southern hemisphere";
    String standard_name "sea_ice_area_fraction";
    String units "percent";
    Float64 valid_max 100.0;
    Float64 valid_min 0.0;
  }
  masks {
    Byte _FillValue -128;
    Float64 colorBarMaximum 5.0;
    Float64 colorBarMinimum 0.0;
    String comment "This bitmask gives the masks which have been applied to convert the ice_conc_unfiltered variable to the ice_conc variable.";
    String flag_descriptions 
"all bits to 0 -> no masks set
bit 1 -> mask for sea ice maximum climatology set
bit 2 -> open water filter mask set
bit 3 -> NWP 2m air temperature mask set";
    Int32 flag_masks 1, 2, 4;
    String flag_meanings "max_ice_climato open_water_filtered high_t2m";
    String grid_mapping "Polar_Stereographic_Grid";
    String long_name "masks used to filter ice concentration";
    String units "1";
    Byte valid_range 0, 7;
  }
  confidence_level {
    Float64 colorBarMaximum 6.0;
    Float64 colorBarMinimum 0.0;
    String flag_descriptions 
"0 -> not processed, no input data
1 -> computation failed
2 -> processed but to be used with care
3 -> nominal processing, acceptable quality
4 -> nominal processing, good quality
5 -> nominal processing, excellent quality";
    String flag_meanings "unprocessed erroneous unreliable acceptable good excellent";
    Byte flag_values 0, 1, 2, 3, 4, 5;
    String grid_mapping "Polar_Stereographic_Grid";
    String long_name "confidence level";
    Byte valid_max 5;
    Byte valid_min 0;
  }
  status_flag {
    Byte _FillValue -1;
    Float64 colorBarMaximum 150.0;
    Float64 colorBarMinimum 0.0;
    String flag_descriptions 
"0 -> nominal value from algorithm used
  2 -> sea ice algorithm applied over lake
 10 -> maximum climatology test applied
 11 -> coastal correction algorithm applied
 12 -> open water filter applied
100 -> missing value due to over land
101 -> missing value due to missing data
102 -> unclassified pixel";
    String flag_meanings "nominal lake background type_mask land missing unclassified";
    Byte flag_values 0, 2, 10, 14, 100, 101, 102;
    String grid_mapping "Polar_Stereographic_Grid";
    String long_name "status flag for concentration of sea ice retrieval";
    String standard_name "sea_ice_area_fraction status_flag";
    Byte valid_max 102;
    Byte valid_min 0;
  }
  total_uncertainty {
    Float64 colorBarMaximum 1.5;
    Float64 colorBarMinimum 0.0;
  }
  smearing_uncertainty {
    Float64 colorBarMaximum 1.5;
    Float64 colorBarMinimum 0.0;
  }
  algorithm_uncertainty {
    Float64 colorBarMaximum 1.5;
    Float64 colorBarMinimum 0.0;
  }
  NC_GLOBAL {
    String abstract 
"The daily analysis of sea ice concentration is obtained from
operation satellite images of the polar regions. It is based
on atmospherically corrected signal and a carefully selected
sea ice concentration  algorithm.  This  product  is  freely
available from the EUMETSAT  Ocean  and  Sea  Ice  Satellite
Application Facility (OSI SAF).";
    String activity_type "Space borne instrument";
    String area "Northern Hemisphere";
    String cdm_data_type "Grid";
    String contact "osisaf-manager@met.no";
    String Conventions "CF-1.6, COARDS, ACDD-1.3";
    String copyright_statement "Copyright 2013 EUMETSAT";
    String creator_email "osisaf-manager@met.no";
    String creator_name "Osisaf Manager";
    String creator_type "person";
    String creator_url "https://www.eumetsat.int/website/home/index.html";
    String distribution_statement "Free";
    String gcmd_keywords 
"Cryosphere > Sea Ice > Sea Ice Concentration
Oceans > Sea Ice > Sea Ice Concentration
Geographic Region > Northern Hemisphere
Vertical Location > Sea Surface
EUMETSAT/OSISAF > Satellite Application Facility on Ocean and Sea Ice, European Organisation for the Exploitation of Meteorological Satellites";
    String history 
"2013-01-01 creation
2016-10-20: changed lat and lon fields to partly correct small bug20170621: Added empty ice_conc_unfiltered and masks field, to be consistent with latest operational product format
2020-10-20T17:16:49Z (local files)
2020-10-20T17:16:49Z https://erddap.emodnet-physics.eu/griddap/SIW_OSISAF_GLO_SIT_SIE_SIC_OBS_conc.das";
    String infoUrl "https://www.eumetsat.int/website/home/index.html";
    String institution "EUMETSAT OSI SAF";
    String instrument_type "Multi-sensor analysis";
    String keywords "algorithm, algorithm_uncertainty, analysis, application, area, climate, concentration, confidence, confidence_level, cryosphere, daily, data, day, earth, Earth Science > Cryosphere > Sea Ice > Ice Extent, Earth Science > Oceans > Sea Ice > Ice Extent, eumetsat, european, exploitation, extent, facility, filter, filtered, flag, fraction, hemisphere, ice, ice_conc, ice_conc_unfiltered, level, masks, meteorological, meteorology, northern, ocean, oceanography, oceans, organisation, osi, osisaf, point, remote sensing, retrieval, saf, satellite, satellites, science, sea, sea ice, sea ice concentration, sea_ice_area_fraction, sea_ice_area_fraction status_flag, smearing, smearing_uncertainty, status, status_flag, tie, tie-point, time, total_uncertainty, uncertainty, unfiltered, used";
    String keywords_vocabulary "GCMD Science Keywords";
    String license "Free";
    String netcdf_version "3.6.3";
    String PI_name "Rasmus Tonboe";
    String platform_name "Multi-sensor analysis";
    String product_id "OSI-401";
    String product_name "osi_saf_ice_conc";
    String product_status "operational";
    String product_version "2.2";
    String project_name "EUMETSAT OSI SAF";
    String references 
"OSI SAF Sea Ice Product Manual, Eastwood S. (editor), v3.7, April 2011
http://osisaf.met.no
http://www.osi-saf.org";
    String software_version "4.1";
    String sourceUrl "(local files)";
    String standard_name_vocabulary "CF Standard Name Table v55";
    String summary "The daily analysis of sea ice concentration is obtained from operation satellite images of the polar regions. It is based on atmospherically corrected signal and a carefully selected sea ice concentration algorithm. This product is freely available from the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Ocean and Sea Ice Satellite Application Facility (OSI SAF).";
    String testOutOfDate "now-3days";
    String time_coverage_end "2012-12-31T12:00:00Z";
    String time_coverage_start "2009-01-01T12:00:00Z";
    String title "Daily Sea Ice Concentration Analysis from OSI SAF EUMETSAT";
    String topiccategory "Oceans ClimatologyMeteorologyAtmosphere";
  }
}

 

Using griddap to Request Data and Graphs from Gridded Datasets

griddap lets you request a data subset, graph, or map from a gridded dataset (for example, sea surface temperature data from a satellite), via a specially formed URL. griddap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its projection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

griddap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/griddap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/griddap/jplMURSST41.htmlTable?analysed_sst[(2002-06-01T09:00:00Z)][(-89.99):1000:(89.99)][(-179.99):1000:(180.0)]
Thus, the query is often a data variable name (e.g., analysed_sst), followed by [(start):stride:(stop)] (or a shorter variation of that) for each of the variable's dimensions (for example, [time][latitude][longitude]).

For details, see the griddap Documentation.


 
ERDDAP, Version 2.02
Disclaimers | Privacy Policy | Contact